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1. Pick up a book 
from the stack on 
the dresser. 

2. Sit on the mattress 
on the floor. 

3. Turn on the lamp 
to provide light. 

4. Open the book 
and start reading. 

Task: Enjoy Reading before bed.

Task: Refresh yourself with a beverage.

Task: Make a cup of coffee and serve it on a plate.

2. Fetch a plate from a 
bunch of steel plates 
below the picture frame.

3. Walk to the table close to a 
cabinet and place the plate on it.

4. Choose a cup from those 
white, plastic cups on the desk. 

5. Fill it with coffee at 
the coffee maker.

1. Go to the long 
desk against the wall.

6. Go back to the table 
and put down the coffee.

1. Walk to the shorter one of two 
desks with monitors. 

2. Pick up the coke cola from the 
variety displayed on the desk. 

3. Sit on the black office chair under 
that same desk to enjoy your drink. 

Task: Watch tv from the sofa.

1. Go to the black 
table to the left of 
the fire extinguisher. 

2. Grab the black 
remote lying on it. 

4. Walk to the black 
sofa close to the bed. 

5. Sit down and watch 
the tv show.

3. Turn on the tv 
with the remote. 

Figure 1: The task-oriented sequential grounding task in 3D scenes (SG3D), wherein an agent is
required to locate a sequence of target objects for detailed steps in a plan to complete daily activities.
To solve this task, an agent must understand each step in the context of the whole plan to identify the
target object, since a single step alone can be insufficient to distinguish the target from other objects
of the same class. The dataset is available at sg-3d.github.io.

Abstract

Grounding natural language in physical 3D environments is essential for the ad-
vancement of embodied artificial intelligence. Current datasets and models for 3D
visual grounding predominantly focus on identifying and localizing objects from
static, object-centric descriptions. These approaches do not adequately address
the dynamic and sequential nature of task-oriented grounding necessary for practi-
cal applications. In this work, we propose a new task: Task-oriented Sequential
Grounding in 3D scenes, wherein an agent must follow detailed step-by-step in-
structions to complete daily activities by locating a sequence of target objects in
indoor scenes. To facilitate this task, we introduce SG3D, a large-scale dataset
containing 22,346 tasks with 112,236 steps across 4,895 real-world 3D scenes. The
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dataset is constructed using a combination of RGB-D scans from various 3D scene
datasets and an automated task generation pipeline, followed by human verification
for quality assurance. We adapted three state-of-the-art 3D visual grounding mod-
els to the sequential grounding task and evaluated their performance on SG3D. Our
results reveal that while these models perform well on traditional benchmarks, they
face significant challenges with task-oriented sequential grounding, underscoring
the need for further research in this area.

1 Introduction

Grounding natural language in the physical 3D world is crucial for advancing embodied artificial
intelligence (Embodied AI) [20, 55], where robots must follow human instructions to complete
complex tasks [69]. Recent years have witnessed the collection of various datasets [31, 8, 3, 63, 55, 32]
aimed at training and testing robust visual grounding models in 3D scenes [69, 70, 9, 23, 30]. While
these datasets have driven progress in 3D visual grounding, they largely borrow practices from
2D visual grounding [8, 3] and focus primarily on identifying and localizing objects based on
object-centric descriptions [17]. As illustrated in Fig. 2, these descriptions unnaturally detail the
target objects’ categories, attributes, and spatial relationships to distinguish them from other objects.
However, a significant yet often overlooked gap exists between these standalone object-centric
referrals and the task-driven, sequential object grounding commonly used in practical scenarios for
Embodied AI [4, 48]. This gap is highlighted in Fig. 2, which compares object-centric and task-driven
visual grounding in 3D scenes.

To bridge this gap, we propose a new task: Task-oriented Sequential Grounding in 3D scenes. In
this task, an agent is instructed to accomplish a daily activity with detailed steps in an indoor scene,
aiming to find a sequence of target objects for each step. To address this challenge, we constructed
a large-scale dataset named SG3D. We compiled a set of RGB-D scans of realistic indoor scenes
sourced from various 3D scene datasets, including ScanNet [49], ARKitScenes [7], 3RScan [53],
etc. These scenes encompass a variety of room types, such as bedrooms, kitchens, offices, and living
rooms. We represent these scenes using 3D scene graphs [5, 54] provided by SceneVerse [31], which
describe the objects’ categories, attributes, and spatial relations within the scenes.

We further designed an automated generation pipeline that utilizes these scene graphs and GPT-4 [2]
to create diverse, high-quality daily tasks. Each task comprises a high-level description and a detailed
plan, with the target object annotated for each step. To ensure the validity of the generated tasks, we
conducted a human verification process to check if the tasks were appropriate for the scenes, if the
plans were sufficient to accomplish the tasks, and if the target objects were correctly identified for
each step. Invalid tasks were either filtered out or manually refined. Ultimately, the proposed SG3D
includes 22,346 tasks with 112,236 steps across 4,895 real-world 3D scenes, as exemplified in Fig. 1.

In our experiments, we adapted three state-of-the-art 3D visual grounding models to the sequential
grounding task and evaluated them on the proposed SG3D. The models included 3D-VisTA [69],
PQ3D [70], and LEO [27]. The results indicate that although these models excel on previous
benchmarks, they struggle with the more complex and realistic grounding presented in the SG3D
benchmark. This highlights the need for further research and development to improve performance in
task-oriented sequential grounding scenarios for Embodied AI.

Our contributions are summarized as follows:

• We proposed a new task, Task-oriented Sequential Grounding in 3D scenes, to address the gap
between object-centric and task-driven grounding required for practical Embodied AI applications.

• We constructed a large-scale dataset for this novel task, SG3D, which contains 22,346 tasks with
112,236 steps across 4,895 real-world 3D scenes.

• We adapted three state-of-the-art 3D visual grounding models (3D-VisTA, PQ3D, and LEO) to
the sequential grounding task and evaluated them on SG3D. Experimental results indicate that
these models struggle with task-oriented sequential grounding, highlighting the need for further
advancements in this area.
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1. Walk to the kitchen counter 
where the sink is located.

2. Use the white soap from the 
dispenser above the counter.

3. Wash your hands thoroughly 
in the sink.

the kitchen counter is next to the 
left side of the wall. the kitchen 
counter is a black rectangle.

this is a soap dispenser. the 
soap dispenser is on the top of 
the sink.

there is a rectangular metal sink. 
it is above a kitchen cabinet.

there is a white paper towel 
dispenser. it is mounted on the 
wall to the right of the 
microwave on the counter.

4. Dry hands with a paper towel 
from the dispenser on the wall.

Task: Wash hands before cooking.

Figure 2: The comparison between task-oriented steps in SG3D (first row) and object-centric referrals
in ScanRefer (second row) for the same target objects.

Table 1: The comparison of SG3D with existing 3D visual grounding benchmarks. SG3D expands
the data scale of prior work by order of magnitude. “VG” stands for Visual Grounding, “SG” for
Sequential Grounding, and and “MT” for Multiple Tasks. * Only new data is counted.

Dataset Task Referral type Text Source Quality Check Scene Obj. Avg. Text Len. Vocab. Total

ScanRefer [8] VG Object-centric Human ✓ 1.5K 33K 20.3 4,197 52K
Nr3D [3] VG Object-centric Human ✓ 1.5K 33K 11.5 2,986 42K
Sr3D [3] VG Object-centric Template ✓ 1.5K 33K 9.7 158 84K
Multi3DRefer* [63] VG Object-centric Template w/ Rephrasing ✓ 1.5K 33K 15.1 7,077 20K
SceneVerse* [31] MT Object-centric Human + GPT-3.5 ✓ 68K 1.5M 14.7 24,304 2.2M

SG3D SG Task-oriented GPT-4 ✓ 4.9K 123K 70.5 8,136 22K / 112K

2 Related Work

3D Vision Language The field of 3D vision-language learning aims to establish a connection
between natural language and the 3D physical world [69, 70, 33]. This connection enables embodied
agents to comprehend their surrounding environment and communicate effectively with humans [69,
48]. Within this emerging domain, several benchmarks have been developed, focusing on tasks
such as visual grounding [8, 3, 1], question answering [6, 65], and dense captioning [12]. While
methods addressing single tasks have been proposed [23, 58, 42, 30, 64, 9], there is a growing trend
towards unified models [69, 70, 13]. Additionally, open vocabulary approaches have gained traction
in recent literature [46, 19, 52]. However, previous 3D visual grounding benchmarks are often
object-centric and miss sequential information, whereas realistic grounding sentences are typically
driven by task-related context [17]. In contrast to previous work, our benchmark provides more
natural and informative language and introduces diverse sequential information.

Grounded Task Planning The field of Embodied AI focuses on the capabilities of agents to reason,
plan, navigate, and act in 3D environments [16, 27, 4]. Grounded task planning is crucial as it
enables these agents to execute human instructions effectively [40, 66]. Established benchmarks such
as ALFRED [50], SAYPLAN [48], BEHAVIOR-1K [34], and TaPA [59] assess these abilities by
measuring the success of the agents’ overall task plans in synthetic environments. Other benchmarks,
like LoTA-BENCH [14], EgoPlan-Bench [11], and G-PlanET [40], evaluate performance on a per-
step basis, using rule-based or closed-set answer assessments. Specialized models [61, 62, 50] and
foundation models [51, 57, 36, 39, 28, 22] have been utilized to accomplish grounded task planning.
In contrast to previous work based on synthetic environments, our benchmark utilizes real 3D scenes.
Moreover, by grounding each planned task to objects instead of low-level actions, we enable a wider
range of actions and facilitate a more comprehensive analysis of results at each step.

3D Large Language Model Recent advancements in large language models (LLMs) have been
significantly enhanced by integrating 3D spatial data, resulting in the development of 3D LLMs [43].
Existing works, such as LEO [24] and Chat3D [56], use object-centric or point-level representations to
incorporate scene information into LLMs during instruction tuning [24, 60, 38, 21, 25]. LL3DA [10]
employs a Q-former-like [35] structure to further improve LLMs’ 3D scene perception. Additionally,
recent models like LEO [27], 3D-VLA [67], and ManipLLM [37] have introduced action capabilities
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1) System Message
You are a helpful assistant that can generate diverse tasks in 
an indoor scene...

2) Scene Graph Example
{'sofa-1': {'relations': ['to the right of armchair-2', 'in front of 
table-3'], 'caption': 'Grey velvet sofa with a rectangular shape 
and a back and arms, suitable for use in a living room.'}, 
'armchair-2': {…}, 'table-3': {…}}

3) Response Format
Task: #Task Description#.
Steps:
1. #STEP-1#. [#Target Object of STEP-1#]
2. #STEP-2#. [#Target Object of STEP-2#]
3. #STEP-3#. [#Target Object of STEP-3#]
...

4) In-context Examples
five examples from different scene types

5) query
content of a new scene graph

3D Scene Scene Graph Task Generation

Task: Enjoy a relaxing moment on the couch while watching TV.

Steps:
1. Go to the blue couch in the living room area. [couch-32]

2. Sit comfortably on the couch. [couch-32]
3. Reach for the remote control on the coffee table. [coffee table-43] [remote-11]
4. Turn on the television inside the wooden cabinet with the remote. [tv-15]

5. Adjust settings or choose a channel with the remote. [tv-15]
6. Lay back and enjoy watching your selected program. [tv-15]

Human verification

Figure 3: The pipeline of generating sequential grounding tasks in 3D scenes.

into 3D LLMs, enabling them to interact with and manipulate objects in 3D environments [27, 29, 41].
Our work enhances the capabilities of 3D LLMs by incorporating grounding abilities, which output
specific objects alongside the text.

3 The 3D Sequential Grounding Benchmark (SG3D)

3.1 Task Definition

The problem of sequential grounding involves determining the relevance of objects in a given task.
Specifically, given a 3D scene S and a task T = (t, {a1, ..., an}) where t is a high-level task
description and a1, ...an are detailed steps of the task plan, a model is required to predict a sequence
of objects O = {o1, ..., on}, i.e., the model needs to learn a mapping f : (S, T ) → O. Compared to
prior work, the challenge in our task lies in grounding objects within sequential steps of a task plan.

3.2 Dataset Construction

As illustrated in Fig. 3, we leverage GPT-4 to generate tasks based on a 3D scene graph, followed by
human verification.

3D Scenes Existing robotic task-planning approaches are typically evaluated in simulated environ-
ments [50, 34, 48], lacking observation of their effectiveness in real-world scenarios. To address
this, we select reconstructed scenes as the 3D environment for our tasks. Specifically, we utilized
real-world scenes from the SceneVerse dataset, incorporating scenes from ScanNet, ARKitScenes,
HM3D, 3RScan, and MultiScan. In total, we curate 4,895 3D scenes in SG3D. Tab. 2 presents the
number of scenes used in each dataset and the average number of object instances per scene.

Scene Graphs To generate the task data, we utilize 3D scene graphs from SceneVerse. Each node
in the graph represents a 3D object instance within the scene, and each edge represents a spatial
relationship between nodes, such as “near”, “below”, or “embedded”. We enhance the scene graphs
by adding object captions provided in SceneVerse, enriching the semantic attributes of the object
nodes.

Task Generation Using the 3D scene graph, we prompt GPT-4 (gpt-4-turbo-2024-04-09) to generate
diverse tasks. We ask GPT-4 to generate five tasks for each scene. Each task comprises a general
description and several steps, while each step involves a target object that the agent must attend
to. We carefully design the prompt and provide five examples from different room types to guide
responses from GPT-4. Post-generation, we filter out tasks with illegal formats or exceed ten steps.
The detailed prompt used for GPT-4 is provided in the Appendix.

Human Verification We manually verify the test set data to ensure data quality. Given the 3D scene
mesh and the task generated by GPT-4, annotators follow these rules to judge each step’s correctness:

1. If the step is unrelated to the task description, judge it as incorrect.

4
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(c) Target Object Counts

Figure 4: Distributions of (a) step counts, (b) text length, and (c) target object counts per task.

Table 2: Dataset statistics of SG3D.
Dataset #scenes #obj. / scene #tasks #steps

3RScan [53] 472 31.5 2,194 11,318
ScanNet [15] 693 30.7 3,174 15,742
MultiScan [45] 117 40.8 547 2,683
ARKitScenes [7] 1,575 12.1 7,395 39,887
HM3D [47] 2,038 31.0 9,036 42,706

Total 4,895 25.1 22,346 112,336

2. If there is a missing step between step k and step k + 1, judge step k + 1 as incorrect.

3. If the step’s description is insufficient to identify the target object, but the target object can be
identified through context, judge it as correct; otherwise, judge it as incorrect.

We manually revised tasks with one incorrect step and dropped tasks with more than one incorrect
step. The screenshot of the interface for verification is provided in the Appendix.

3.3 Dataset Analysis

In total, we collected data containing 22,346 tasks, encompassing 112,236 steps. Tab. 2 presents the
statistics of task and step counts in our dataset. Each task description has an average length of 6.9
words, and each step has an average length of 12.7 words. The dataset was split into training and
evaluation sets. For 3RScan, scenes from its training and evaluation splits were used as our training
set, while scenes from its test split were used as the evaluation set. For other datasets, we adhered to
the original split of the 3D scenes provided.

Fig. 4(a) illustrates the distribution of the number of steps per task, revealing an average of 5.03
steps per task. This underscores the complexity of our benchmark and the sequential nature of our
data. Fig. 4(b) presents a histogram displaying the distribution of total text lengths for each task,
including the task description and all associated steps, with an average of 70.5 words. This extended
context poses a significant challenge for many text encoders, indicating the need for models capable
of handling lengthy inputs. Additionally, we examine the number of distinct target objects involved in
each task, as shown in Fig. 4(c). Unlike the step counts, the number of unique target objects per task
considers target objects with the same ID across different steps as one object, resulting in an average
of 2.59 unique objects per task. This finding indicates that multiple objects are typically involved in
this process.

To illustrate the diversity of our dataset, we present three word clouds here. Fig. 5(a) and Fig. 5(b)
depict the frequency of words in task descriptions and action steps, respectively. In the task descrip-
tions, the terms “prepare” and “organize” are the most prevalent activities. In the action steps, “walk”
and “place” are the most common actions, “table” is the most frequent object, and “white” is the most
frequent adjective. This indicates that task descriptions tend to be abstract and demand-oriented, while
action steps offer detailed, execution-oriented instructions. Fig. 5(c) highlights the most frequently
occurring target object classes, including but not limited to “cabinet”, “table”, “chair”, “sink”, “bed”,
“shelf”, demonstrating the association of different object classes with the task guidance.
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(a) Task Description (b) Action Step (c) Target Object Labels

Figure 5: Word clouds of (a) task description, (b) action step, and (c) target object labels.

4 3D Sequential Grounding Models

We explore three typical models for this purpose: the dual-stream model 3D-VisTA [69], the query-
based model PQ3D [70], and the 3D LLM LEO [27], with further details discussed below.

4.1 Architecture

Dual-stream model. In the dual stream model, we build upon the 3D-VisTA [69] baseline. In
3D-VisTA, the model employs a spatial transformer to process 3D object representations and extracts
text features using BERT [18]. These object and text tokens are then combined and input into a
unified transformer architecture to predict the target object.

Query-based model. Unlike the dual stream model, the query-based model employs a generalized
decoding framework for vision-language tasks [71, 68]. PQ3D [70] is a prominent query-based
model designed for 3D environments that unifies multiple representations and addresses various tasks
through multi-task training. This model utilizes the CLIP text encoder to process textual inputs. For a
fair comparison with other models, we limit our implementation to only the point feature branch for
scene feature extraction.

3D LLM. The powerful reasoning capabilities of Large Language Models are highly advantageous
for our task. We have adapted the recent 3D LLM LEO [27] to suit our needs. In addition to
predicting actions for each step, our model also predicts a special token called [GRD]. This token
enables integrated reasoning about both the previous and current step instructions. In order to predict
the object, we concatenate the object token with the [GRD] token and pass them through the same
grounding head as used in 3D-VisTA and PQ3D.

4.2 Training & Inference

During training, we optimize the three types of models previously discussed using the cross-entropy
loss, which compares the predicted object scores f(S, T ) with the ground truth scores O, as defined
in Eq. (1). In the case of the 3D LLM, following the methodology of LEO, we introduce an additional
cross-entropy loss to provide supervision for action generation in text format.

Lgrd = E(S,T ,O)∼DCrossEntropy(f(S, T ),O) (1)
During the inference phase, the models are provided with the task description and detailed steps and
predict the target object for each step. This setup applies to all models, facilitating a direct assessment
of their ability to identify and prioritize the correct object based on sequential instructions.

5 Experiments and Results

5.1 Settings

Training Details We conduct training for all three model types across all available datasets for 50
epochs. For optimization, we employ the AdamW optimizer, setting the learning rate at 1e-4, with β1

configured to 0.9 and β2 to 0.999. Additionally, we apply a weight decay of 0.05. Specifically, for the
PQ3D and 3D-VisTA models, we utilize a batch size of 32. For the LEO model, we reduce the batch
size to 16 due to GPU memory limit. Furthermore, we use LoRA tuning [26] for the parameters of
the LLM in LEO with a rank setting of 16.
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Figure 6: Sequential grounding models.

Evaluation Metrics We assess the grounding performance of all models using two key metrics: task
accuracy (t-acc) and step accuracy (s-acc). Task accuracy refers to the average grounding accuracy
over the total number of tasks t. A sample is considered correct if the grounded objects are accurately
identified for all steps within a task. Conversely, step accuracy is calculated by averaging the accuracy
across all individual steps a. Task accuracy evaluates the model’s ability to consistently interpret and
respond accurately across a sequence of text prompts. On the other hand, step accuracy focuses on
the model’s effectiveness at each individual step.

5.2 Quantative results

1.Previous 3D-VL models, such as 3D-VisTA and PQ3D, struggle to transfer to the sequential
grounding task without fine-tuning. In the zero-shot setting, these models achieve relatively low
step accuracies ranging from 22.8% to 34.6% and task accuracies ranging from 0.0% to 10.3% across
all datasets. This indicates that the models’ pre-training on non-sequential tasks is insufficient for
handling the complexities of sequential grounding, highlighting the need for task-specific fine-tuning.

2. Fine-tuning greatly enhances performance but low task accuracy scores (< 40%) indicate
that consistent sequential grounding remains a challenge. 3D-VisTA’s t-acc increases from 8.3%
to 30.6%, while PQ3D’s t-acc improves from 7.8% to 26.8%. LEO, the 3D LLM model, achieves
the best performance after fine-tuning, with a s-acc of 62.8% and a t-acc of 34.1%. Despite these
improvements, all models’ t-acc scores remain below 40%, indicating that current models still struggle
to achieve consistent sequential grounding. This limitation highlights the need for further research
and model design to effectively address the challenges posed by sequential grounding tasks.

3. The 3D LLM model, LEO, consistently outperforms the other models across all datasets, par-
ticularly in terms of task accuracy. LEO achieves the highest task accuracies 34.1%, compared to
3D-VisTA 30.6% and PQ3D 26.8%. This advantage can be attributed to LEO’s 3D LLM architecture,
which effectively captures and reasons about sequential dependencies in grounding tasks. Although
LEO also enhances step accuracy, the improvement is less substantial compared to the significant
gains observed in task accuracy.

4. Despite access to ground truth object labels, the performance of GPT-4 remains limited in
the sequential grounding task. GPT-4 achieves a relatively high step accuracy of 73.4% when given
access to ground truth labels. However, its task accuracy is only 46.6%, indicating that the model
struggles to maintain consistency and correctness throughout the entire sequence of steps in a task.
This result suggests that adapting large language models to sequential grounding tasks is a nontrivial
challenge.

5.3 Ablation Study & Analysis

Effect of offering sequential information. To analyze the impact of sequential information, we
remove multi-step action context during both the training and testing phases. The experimental
results in Fig. 7 show that removing sequential information leads to a significant performance drop in
task accuracy for both LEO and 3D-VisTA. LEO experiences an average t-acc drop of 3.4%, while
3D-VisTA has an even higher average drop of 5.0%. This suggests that models have learned to utilize
sequential information during the grounding process. In contrast, PQ3D’s performance drop is much
more limited, with an average t-acc drop of only 0.8%. This can be attributed to PQ3D’s reliance on

7



Table 3: The grounding accuracy on SG3D. “s-acc” denotes the grounding accuracy averaged over
steps and “t-acc” denotes the grounding accuracy averaged over tasks. A task is considered correct if
and only if all steps are correct. We run each experiment for three times and report error bars.

Model Type ScanNet 3RScan MultiScan
s-acc t-acc s-acc t-acc s-acc t-acc

Zero-shot
3D-VisTA Dual-stream 26.9 4.7 23.7 2.2 22.8 4.7
PQ3D Query-based 29.7 4.1 24.6 2.9 23.2 0.0
GPT-4 w/ GT labels LLM 69.2 38.1 73.1 37.0 73.7 32.6

Fine-tune
3D-VisTA Dual-stream 58.4± 0.1 21.1± 0.5 53.3± 0.8 14.9± 1.5 48.3± 3.4 11.6± 2.4
PQ3D Query-based 54.8± 0.8 17.8± 0.7 49.3± 1.3 9.9± 2.5 46.4± 2.1 4.7± 0
LEO 3D LLM 61.2± 1.0 25.7± 1.7 55.8± 0.6 16.0± 1.8 52.7± 1.6 7.6± 1

Model Type ARKitScenes HM3D OverAll
s-acc t-acc s-acc t-acc s-acc t-acc

Zero-shot
3D-VisTA Dual-stream 30.8 9.0 25.3 10.3 26.9 8.3
PQ3D Query-based 34.6 8.6 24.4 9.7 28.2 7.8
GPT-4 w/ GT labels LLM 73.2 48.3 75.9 52.1 73.4 46.6

Fine-tune
3D-VisTA Dual-stream 68.8± 0.9 37.6± 1.1 59.6± 0.7 32.4± 0.8 60.9± 0.4 30.6± 0.7
PQ3D Query-based 65.2± 0.5 32.1± 0.7 56.1± 0.3 30.0± 0.7 57.3± 0.1 26.8± 0.5
LEO 3D LLM 69.6 ± 0.4 41.5 ± 1.5 61.5 ± 1 35.7 ± 1.3 62.8 ± 0.7 34.1 ± 1.2

ScanNet 3RScan MultiScan ARKitScenes HM3D OverAll
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Figure 7: Ablation of sequential steps.
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Figure 8: Data efficiency for training.

a CLIP text encoder, which may have difficulty comprehending long sentences, thereby overfitting to
short, single-step instructions.

Training data. Fig. 8 shows that increasing the amount of training data improves the performance of
all models. Notably, LEO demonstrates higher data efficiency, achieving comparable performance to
PQ3D and 3D-VisTA using only 25% of the data. This advantage likely stems from LEO’s foundation
on a large language model, which has been pre-trained on extensive task-relevant information and
acquired common sense knowledge.

5.4 Qualitative Results

Fig. 9 demonstrates that sequential grounding tasks require models to reason across sequential steps.
The results from LEO show that after training, it has the ability to perform sequential grounding,
as illustrated in tasks 1, 2, and 5. However, the model sometimes struggles to maintain sequential
consistency, as seen in task 3. Additionally, task 4 presents a failure case where the model does
not understand the concept of a diaper bin. Our dataset is task-oriented and requires common sense
knowledge to solve effectively. The examples highlight the challenges and complexities involved in
sequential grounding tasks, emphasizing the need for models to possess both sequential reasoning
capabilities and relevant common sense knowledge to achieve consistent and accurate results.
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Task 2: 
Watch a movie on the 
television

Step1: Walk to the dresser close to 
the organizer shelf and the 
instrument case.

Task 3:
Sanitize your hands.

Step1: Move towards the sink below 
the soap dispenser aligned with the 
toilet seat cover dispenser.

Step2: Turn on the sleek black 
television above it

Step2: Reach for the bottle of hand 
sanitizer aligned with the toilet seat 
cover dispenser inside the mirror.

Step3: Sit on the bed decorated with 
a cozy blanket and two plush pillows. 

Step3: Apply a generous amount of 
sanitizer to your hands.

Step4: Enjoy the movie on the 
television.

Step4: Rub your hands together 
thoroughly to spread the sanitizer.

Task 4:
 Check the time in the 
nursery.

Step1: Go to the black diaper bin 
next to the white wardrobe closet.

Step2: Look upward to see the clock 
with a red tag above the bin. 

Task 5:
Enjoy some nursery room 
decorations

Step2: Look up to admire the baby 
mobile with a tan tent above the crib.

Step1: Walk to the baby crib near the 
changing table.

Task 1: 
Water the desk plant

Step1: Go to the cabinet standing on 
the floor and open a drawer to find a 
watering can.

Step2: Fill the watering can using 
water from the radiator below the 
window. 

Step3: Walk back to the desk 
supporting the green plant next to 
several monitors.

Step4: Carefully pour water into the 
pot of the small green plant.

Step5: Wipe any spilled water from 
the desk using a cloth from the 
cabinet

❌

❌

Figure 9: Qualitative results from LEO. Red are predictions and green are ground-truth boxes.

6 Conclusion and Future Work

In this work, we introduce the task of Task-oriented Sequential Grounding in 3D scenes and present
SG3D, a large-scale dataset designed to facilitate research in this area. Evaluations of state-of-the-art
3D visual grounding models on SG3D benchmark reveal the substantial challenges in adapting these
models to sequential grounding tasks. These results emphasize the necessity for further research and
model development. We encourage the community to move beyond traditional 3D visual grounding
towards more practical, task-oriented applications, paving the way for more advanced and capable
embodied agents.

Limitations The current dataset cannot be directly transferred to simulation platforms for robot
manipulation, and the performance of the evaluated models is insufficient for reliable real-world
deployment. To improve performance, future research can explore integrating advanced techniques
such as chain-of-thought reasoning, reflection mechanisms, and 2D vision foundation models.
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A Appendix

A.1 Details of Dataset Construction

Detailed Prompt used in Task Generation The prompt messages employed in the task generation
process are depicted in Fig. A1, with the "System prompt" specifically illustrated in Fig. A2. Specific
response examples, denoted as “<EXAMPLES>” in the system prompt, are presented in Fig. A3. We
deliberately omit to show GPT-4 the corresponding scene graph for the provided response examples,
as an overly long context increases the likelihood of errors.

messages = [{‘role’: ‘system’, ‘content’: System prompt}, {‘role’: ‘user’, ‘content’: Scene graph of the scene to
process}]

Figure A1: Prompts messages for GPT-4 task generation.

Details in Human Verification Fig. A4 shows the interface used for human verification. The
interface consists primarily of an interactive 3D mesh window and a right-hand column that displays
task data. When a specific step is selected, the target object is highlighted within the mesh using
a red bounding box. Users can rotate, translate, and zoom in or out within the 3D mesh window.
Annotators mark each step with a tick or a cross. Following this verification process, tasks containing
one incorrect step are manually revised by ourselves.

A.2 Additional Data Statistics

The statistics for task and step counts in the training and validation splits are presented separately in
Tab. A1.

Table A1: Statistics of the training and evaluation splits for various datasets.
Training Set Evaluation Set Train+Eval

3RScan # tasks 2,056 138 2,194
# steps 10,622 696 11,318

ScanNet # tasks 2,731 443 3,174
# steps 13,634 2,108 15,742

MultiScan # tasks 504 43 547
# steps 2,459 224 2,683

ARKitScenes # tasks 6,952 443 7,395
# steps 37,552 2,335 39,887

HM3D # tasks 8,146 890 9,036
# steps 38,833 3,873 42,706

Total # tasks 20,389 1,957 22,346
# steps 103,100 9,236 112,336

A.3 Implementation Details

During the training phase for 3D-VisTA and PQ3D, we concatenate t and {a1, ..., ap} to predict
the object op at each step p during gradient updates. For the training of LEO, which allows for
multiple [GRD] tokens in a single forward pass, we concatenate t and {a1, ..., an} to predict all
objects simultaneously. In the 3D LLM LEO model, object tokens are first processed by a grounding
head, which consists of a two-layer multi-layer perceptron, before being fed into the LLM. To ensure
a fair comparison among these three models, we employ the same PointNet++ encoder across all
models. Beam search is utilized in LEO for generating action steps and the [GRD] token, with the
beam width set to 4.
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You are a helpful assistant that can generate diverse tasks in an indoor scene.

The scene is represented by a scene graph in the JSON dictionary format. Each entity in the scene graph denotes
an object instance, named ‘<category>-<ID>’. The ‘caption’ describes the object’s attributes, such as ‘color’,
‘material’, etc. The ‘relations’ describes the object’s spatial relations with other objects. For example, from the
scene graph:
```
‘sofa-1’: ‘relations’: [‘to the right of armchair-2’, ‘in front of table-3’], ‘caption’: ‘Grey velvet sofa with a
rectangular shape and a back and arms, suitable for use in a living room.’, ‘armchair-2’: ‘relations’: [‘to the left
of sofa-1’], ‘caption’: ‘The armchair is made of leather, specifically black leather, and has a spherical shape.’,
‘table-3’: ‘relations’: [], ‘caption’: ‘The table is a rectangular wooden table with a brown finish, sometimes used as
a dining table or coffee table, with a smooth wooden texture and various styles, including a sign or place setting on
it, and can have plates or a white cloth on it.’
```

You can know that ‘sofa-1’ is grey, the ‘armchair-2’ is made of leather, the ‘table-3’ is made of wood, the
‘armchair-2’ is on the left of the ‘sofa-1’, the ‘sofa-1’ is in front of the ‘table-3’.

Using the provided scene graph, design daily tasks that a person can do in this scene. Besides, decomposing every
task into a sequence of steps that can be performed using the objects in this scene. For each step, give the target
object that the person should attend to. Your output must follow the template below:
```
Task: #Describe the task using one sentence.#
Steps:
1. #The step must perform only one action. Split actions such as ‘pick up xxx and place it xxx’ into two separate
steps. All objects, attributes, and relations must be explicitly listed in the given scene graph. Do not include the IDs
of the objects, use ordinal words, attributes, and relations to refer to different object instances of the same category.
Use pronouns (‘it’, ‘them’, ‘here’, and ‘the other’, etc.) as much as possible to make the step concise.# [#Use
‘<category>-<ID>’ to denote the target object. Do NOT assume objects that do not exist in the scene graph! Each
step must have exactly one target object. #]
2. ...
3. ...
...
```

Here are some examples:
```
<EXAMPLES>
```

Generate 5 different tasks involving different objects and separate these tasks by "===".

Figure A2: System prompt for GPT-4 task generation.

A.4 Social Impacts

Sequential grounding models significantly impact various societal domains. Enhanced 3D interaction
capabilities in advanced embodied agents can substantially improve assistive technologies for indi-
viduals with disabilities, facilitating daily activities and enriching their quality of life. In healthcare,
these models augment the functionality of robotic assistants, enabling more efficient navigation and
operation within complex hospital environments.

However, there are notable negative social implications to consider. As the proficiency of sequential
grounding technologies advances, so too does their ability to monitor and analyze detailed environ-
mental and activity data. This escalation in capability may increase surveillance potential, potentially
encroaching upon individual privacy rights, particularly if deployed in public or semi-public spaces
without adequate regulatory frameworks and protective measures.
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A.5 Generation ability of LEO

In this additional experiment, given the task description t, we ask LEO to generate both action steps
{a1, .., an} and object {o1, ..., on}. Since the action steps can be rearranged in various topological
orders, we do not use a perfect match to measure the similarity between the predicted plan and the
ground truth plan. Instead, we employ metrics from OpenEQA [44], which utilize GPT-4 to score the
model’s response based on ground truth. A score of 1 indicates no match, while a score of 5 indicates
a perfect match. In our experiments, the GPT score on ScanNet is 2.1± 1.0, suggesting significant
room for improvement. The prompts used for score computation are provided in Fig. A5.
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===
Task: Make me a cup of coffee.
Steps:
1. Go to the long desk against the wall. [desk-15]
2. Choose a cup from those white, plastic cups on the top of the desk. [cups-19]
3. Fill it with coffee at the coffee maker. [coffee maker-16]
4. Walk to the table close to a cabinet. [table-23]
5. Put the cup down. [table-23]
6. Return to the long desk. [desk-15]
7. Fetch a plate from a bunch of steel plates below a picture frame hanging on the wall. [plates-17]
8. Go back to the table. [table-23]
9. Put the cup on the plate on the table. [table-23]
===
Task: Watch tv from the sofa.
Steps:
1. Go to the black table to the left of the fire extinguisher. [table-30]
2. Grab the black remote lying on it. [remote-36]
3. Turn on the tv with the remote. [tv-38]
4. Walk to the table in the middle of the bed and the white cabinet. [table-58]
5. Place the remote here. [table-58]
6. Walk to the black sofa close to the bed. [sofa-14]
7. Sit here to admire tv show. [sofa-14]
===
Task: Clean the mirror.
Steps:
1. Walk to the white cabinet. [cabinet-7]
2. Grab the towel on it. [towel-10]
3. Put the towel into the sink. [sink-37]
4. Turn the faucet on. [faucet-13]
5. Wet the towel in the sink. [sink-37]
6. Turn the faucet off. [faucet-13]
7. Wipe the mirror with the towel. [mirror-11]
8. Put the towel into the sink again. [sink-37]
9. Turn the faucet on. [faucet-13]
10. Wash the towel in the sink. [sink-37]
11. Turn the faucet off. [faucet-13]
12. Wring the towel dry in the sink. [sink-37]
13. Put it back to the cabinet. [cabinet-7]
===
Task: Browse the internet.
Steps:
1. Walk to the desk adorned with papers. [desk-19]
2. Turn on the computer tower behind the desk and the bookshelf. [computer tower-7]
3. Sit down on the nearest chair. [chair-26]
4. Fetch the mouse on the desk. [mouse-8]
5. Look at the screen of the monitor. [monitor-14]
===
Task: Go to sleep.
Steps:
1. Go to the curtain. [curtain-11]
2. Close it. [curtain-11]
3. Walk to the nightstand with the telephone. [nightstand-15]
4. Turn off the lamp on this nightstand. [lamp-19]
5. Go to the other nightstand. [nightstand-14]
6. Set the alarm on it. [alarm clock-28]
7. Lie down on the bed. [bed-20]

Figure A3: <EXAMPLES> in system prompt for GPT-4 task generation.
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Figure A4: Screenshot of the interface for human verification.

You are a helpful assistant that can evaluate the quality of task planning given a scene, a task description, a ground
truth task planning, and a predicted task planning. To mark a response, you should output a single integer between
1 and 5 (including 1, 5), with format ```Your mark: number```. 5 means that the predicted task planning perfectly
solves the problem described in the task and matches the ground truth task planning. 1 means that the predicted
task planning is completely irrelevant to the task description and does not match the ground truth task planning.

The scene is represented by a scene graph in the JSON dictionary format. Each entity in the scene graph denotes
an object instance, named ‘<category>-<ID>’. The ‘caption’ describes the object’s attributes, such as ‘color’,
‘material’, etc. The ‘relations’ describes the object’s spatial relations with other objects. For example, from the
scene graph:
```
‘sofa-1’: ‘relations’: [‘to the right of armchair-2’, ‘in front of table-3’], ‘caption’: ‘Grey velvet sofa with a
rectangular shape and a back and arms, suitable for use in a living room.’, ‘armchair-2’: ‘relations’: [‘to the left
of sofa-1’], ‘caption’: ‘The armchair is made of leather, specifically black leather, and has a spherical shape.’,
‘table-3’: ‘relations’: [], ‘caption’: ‘The table is a rectangular wooden table with a brown finish, sometimes used as
a dining table or coffee table, with a smooth wooden texture and various styles, including a sign or place setting on
it, and can have plates or a white cloth on it.’
```

You can know that ‘sofa-1’ is grey, the ‘armchair-2’ is made of leather, the ‘table-3’ is made of wood, the
‘armchair-2’ is on the left of the ‘sofa-1’, the ‘sofa-1’ is in front of the ‘table-3’.

Using the provided scene graph, you should decide whether predicted task planning can solve the problem
described in task description.
Here are some examples:
```
<example>
```

Your Turn, output with format ```Your mark: number```.
Scene graph: <scene graph>
Task description: <task description>
Ground truth task planning text: <gt plan text>
Ground truth object id: <gt object id>
Predicted task planning text: <pred plan text>

Figure A5: Prompt messages for computing GPT score.

A5


	Introduction
	Related Work
	The 3D Sequential Grounding Benchmark (SG3D)
	Task Definition
	Dataset Construction
	Dataset Analysis

	3D Sequential Grounding Models
	Architecture
	Training & Inference

	Experiments and Results
	Settings
	Quantative results
	Ablation Study & Analysis
	Qualitative Results

	Conclusion and Future Work
	Appendix
	Details of Dataset Construction
	Additional Data Statistics
	Implementation Details
	Social Impacts
	Generation ability of LEO


