2212.10621v1 [cs.CV] 20 Dec 2022

arXiv

CHAIRS: Towards Full-Body Articulated Human-Object Interaction

Nan Jiang"?*f, Tengyu Liu®*, Zhexuan Cao??', Jieming Cui?,
Yixin Chen?, He Wang', Yixin Zhu'®, Siyuan Huang?™

*Equal contributors

! Peking University

T Work done during an internship at BIGAI
2 Beijing Institute of General Artificial Intelligence (BIGAI)

MK yixin.zhu@pku.edu.cn, syhuang@bigai.ai

3 Tsinghua University

https://jnnan.github.io/project/chairs/

Figure 1. Examples of the proposed CHAIRS dataset. It contains fine-grained interactions between 46 participants and 81 sittable ob-
jects with drastically different kinematic structures, providing multi-view RGB-D sequences and ground-truth 3D mesh of humans and

articulated objects for over 17.3 hours of recordings.

Abstract

Fine-grained capturing of 3D Human-Object Interac-
tions (HOIs) boosts human activity understanding and fa-
cilitates downstream visual tasks, including action recogni-
tion, holistic scene reconstruction, and human motion syn-
thesis. Despite its significance, existing works mostly as-
sume that humans interact with rigid objects using only
a few body parts, limiting their scope. In this paper, we
address the challenging problem of Full-Body Articulated
Human-Object Interaction (f-AHOI), wherein the whole hu-
man bodies interact with articulated objects, whose parts
are connected by movable joints. We present Capturing
Human and Articulated-object InteRactionS (CHAIRS),
a large-scale motion-captured f-AHOI dataset, consisting
of 17.3 hours of versatile interactions between 46 partici-
pants and 81 articulated and rigid sittable objects. CHAIRS
provides 3D meshes of both humans and articulated ob-
jects during the entire interactive process, as well as re-
alistic and physically plausible full-body interactions. We

show the value of CHAIRS with object pose estimation. By
learning the geometrical relationships in HOI, we devise
the very first model that leverage human pose estimation to
tackle the estimation of articulated object poses and shapes
during whole-body interactions. Given an image and an es-
timated human pose, our model first reconstructs the pose
and shape of the object, then optimizes the reconstruction
according to a learned interaction prior. Under both evalu-
ation settings (i.e., with or without the knowledge of objects’
geometries/structures), our model significantly outperforms
baselines. We hope CHAIRS will promote the community
towards finer-grained interaction understanding. We will
make the data/code publicly available.

1. Introduction

In computer vision and robotics, Human-Object Interac-
tion (HOI) [29,30,62,64] is the crux of modern fine-grained
human activity understanding. In this work, we tackle
a challenging problem of Full-Body Articulated Human-
Object Interaction (f~AHOI), which requires (i) building on
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kinematic-agnostic object representations for articulated
objects, and (ii) modeling the fine-grained spatial-temporal
interactions between objects and the human whole-bodies.
Specifically, we address the problem of object pose estima-
tion under f-AHOI, as the reconstruction of foreground 3D
human poses is relatively easy from the front-view cameras.

Object pose estimation under f~AHOI is inherently chal-
lenging due to three primary reasons:

Lack f-AHOI datasets that captures human whole-
bodies interacting with articulated objects Despite re-
cent progress in 3D HOI, prior works either assume that
the objects to be interacted with are rigid [2, 28, 47, 65],
or the interactions involve only part of human bodies (e.g.,
only hands [1 1] or upper limbs [14,58]). These assumptions
oversimplify daily interactions; humans use different body
parts to interact with articulated objects composed of mov-
able parts, such as cabinets and office chairs, calling for a
dataset with a finer-grained level of interactions.

Large variance of object kinematic structures Ob-
jects related to f~-AHOI show significant divergence in their
kinematic structures, even within the same category; objects
possess various numbers and types of parts and joints. Such
diversity is in stark contrast to the articulated objects mod-
eled in literature [11, 14,31, 58], which assumes limited or
no variety in kinematic structures. Reconstructing objects
with diverse geometries and structures remains challenging.

Complex and subtle relations between human body
parts and object parts Interacting with articulated ob-
jects involves complicated spatial and physical relation-
ships, with severe occlusions and rich contacts that in-
capacitate conventional pose estimation methods that rely
on pointcloud template-matching [19, 27, 39, 50, 65]. The
contact-rich property also challenges capturing the fine de-
tails in reconstruction, as even small errors can result in im-
plausible interactions such as penetration and floatation.

We devise the following three solutions to tackle the
above three challenges, respectively.

To address the scarcity of f-AHOI dataset, we present
CHAIRS, a large-scale f-AHOI dataset with multi-view
RGB-D sequences. As shown in Fig. 1, CHAIRS includes
17.3 hours of diverse interactions among 46 participants and
81 sittable objects (e.g., chairs, sofas, stools, and benches),
28 of which have movable parts; each frame includes 3D
meshes of whole-body humans and objects. In this work,
we focus on interactions with sittable objects; they are di-
verse in structure and contain distinct movable parts that
afford various whole-body human interactions.

To model diverse kinematic structures, we extend the
task of object pose estimation to the challenging setting of
kinematic-agnostic pose estimation. Existing datasets [31,
52,56] and methods [1, 27, 36, 48] for articulated objects
assume similar or identical kinematic structure for intra-
class objects; this assumption fails when dealing with real-

world daily objects. The kinematic structures in CHAIRS
vary from a rigid stool with no articulation to swivel chairs
with 7 movable parts. Specifically, we relax the assumption
of limited kinematic structures to an open set of flexible but
known structures. Given an observed image, an estimated
human body from the image, and the kinematic structure of
the object of interest, we aim to reconstruct the pose and
shape of the object.

To disambiguate the complex and subtle relations dur-
ing the whole-body interactions with articulated objects,
we devise a novel pose estimation approach that lever-
ages the fine-grained interaction relationships to reconstruct
the interacting object. A common solution in the prior
arts [2, 16, 65] is to manually label each object mesh with
contact maps corresponding to human body parts. In com-
parison, our method exploits the complex and fine rela-
tionships with a reconstruction model and an interaction
prior learned with conditional Variational Auto-Encoder
(cVAE), which avoids the pre-defined knowledge through
mundane annotation. Specifically, our approach first recon-
structs coarse shapes and poses of the objects, then opti-
mizes the details with the learned interaction prior.

Our contributions are four-fold. (i) We present
CHAIRS, a large-scale multi-view RGB-D dataset with di-
verse and high-quality 3D meshes of human and articulated
objects. (ii) We extend articulated object pose estimation to
the challenging setting of f-AHOI. (iii) We devise an object
pose estimation approach agnostic to the articulation struc-
ture. (iv) We propose a generic interaction prior that cap-
tures the fine-grained interactions with sittable objects and
facilities the pose estimation.

2. Related Work

3D Human-Object Interaction (HOI) HOI research
has evolved from detecting interactions in 2D images [4, 13,
29,30,40,62,64] to reconstructing [5, 16,44,54,58,63,660]
and generating [17, 21,51, 53, 57] 3D interactions in 3D
scenes. Notably, PiGraph [44] captures human daily activ-
ities, Rosinol et al. [43] represent the interactions with a
graph structure, and Hassan et al. [16, 58] reconstruct 3D
human-scene interactions. However, these works rely on vi-
sual observations to collect ground-truth 3D poses, which
leads to inaccurate reconstruction under partial observation.
Meanwhile, MoCap systems [2, 1 |,47] provide fine-grained
3D interactions between humans and 3D objects. In partic-
ular, GRAB [47] and ARCTIC [11] focus on interactions
with small objects, such as grasping and holding, whereas
BEHAVE [2] captures the interactions with daily objects.
However, most existing works focus on either rigid objects
or articulated objects but in the domain of hand-object in-
teractions. In comparison, our CHAIRS dataset provides re-
alistic whole-body interactions (e.g., move the bench, relax
in the chair) with diverse articulated objects.



Table 1. Comparisons between CHAIRS and other HOI datasets.

Dataset #object # participants  # instance #hours fps #view articulated objects human annotation type
PROX [16] / 20 / 0.9 30 1 No Whole-body  single-kinect
GRAB [47] 51 10 4 3.8 120 0 No Whole-body mocap

BEHAVE [2] 20 8 6 0.14 30 4 No Whole-body multi-kinect
ARCTIC[11] 10 9 1 1.2 30 8+1 Yes Two hands mocap
D3D-HOI [58] 24 5 / 0.6 3 1 Yes Whole-body manual
CHAIRS (Ours) 81 46 32 17.3 30 4 Yes Whole-body mocap

Articulated Human-Object Interaction (AHOI) Ar-
ticulated Human-Object Interactions (AHOIs) build on
part-level object representations and model the fine-grained
spatial-temporal interactions between human and articu-
lated objects [14]. To date, the most relevant works are
D3D-HOI [58], ARCTIC [11], and 3DADN [41]. Specif-
ically, D3D-HOI [58] collects a video dataset of humans
interacting with containers such as microwaves and refrig-
erators, ARCTIC [11] collects a motion-captured RGB-D
dataset of hand-object interactions with articulated objects,
whereas 3DADN [41] annotates movable object parts from
internet videos as 3D planes with rotations. Of note, all ob-
jects only have one revolute joint connecting two rigid parts,
and all interactions captured focus only on hand-object in-
teractions such as “open” and “close.” In comparison, we
take one step further to study the whole-body AHOIs; most
body parts interact with diverse articulated objects.

Contact-Rich HOI f-AHOI requires a more detailed
HOI understanding. Despite the rapid growth of literature in
3D HOI, only a few involve full-body contacts either by re-
construction [16] or generation [15,53,67]. However, these
prior arts are limited to interactions with static scenes and
limited interactions. In comparison, our CHAIRS dataset
contains diverse articulated objects and interactions.

Articulated Object Pose Estimation Estimating rota-
tion and translation (i.e., 6-DOF pose estimation) of rigid
objects has recently attracted significant attentions [3, 9,

19,24,37,39,49]. Template-based methods are commonly
adopted approach [20,25,50,60] and have spurred a series of
recent works in articulated object pose estimation [8,27,33].
Other methods rely on regression models [1] or implicit
functions [23, 36, 48, 59]. Despite recent progress, these
methods are based on a simplified assumption of consistent
kinematic structures within each object category. Hence, the
pose estimation models are designed and trained to estimate
the attributes and states of a fixed set of joints. Although
recent datasets on articulated objects [31, 32, 52] contain
different kinematic structures, the diversity of kinematic
structures is not the primary focus and thus is still limited.
To overcome these shortcomings, we collect the CHAIRS
dataset with diverse kinematic structures and devise models
to handle 3D objects with various parts and kinematics.

3. The CHAIRS Dataset

A major obstacle in modeling AHOISs is the absence of
accurate 3D annotations. In this work, we present CHAIRS,
a large-scale AHOI dataset with multi-view RGB-D se-
quences. CHAIRS provides high-quality 3D meshes of hu-
mans and articulated objects during interactions, collected
with an inertial-optical hybrid motion capture (MoCap)
system and optimized for superior realism and physical
plausibility. Tab. 1 shows the detailed comparison between
CHAIRS and previous HOI datasets.
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Figure 2. Examples from the proposed CHAIRS dataset. CHAIRS captures versatile AHOIs from carefully calibrated multi-view RGB-D
cameras and provides fine-grained 3D meshes for both humans and articulated objects. We show (a) RGB frames and ground-truth meshes
of AHOIs in sequences and (b) diverse types of AHOISs.



3.1. Data Collection

Summary CHAIRS has a total of 1390 sequences of
articulated interactions between human and sittable objects,
such as chairs, sofas, stools, and benches. Fig. 2 shows ex-
emplar sequences of CHAIRS and object gallery. For each
object, we asked 6 participants to record three sequences
of interactions with it, yielding 18 sequences for each ob-
ject. In each sequence, a participant was asked to perform
6 different actions. The actions were randomly chosen from
a list of 32 interactions (e.g., move the stool forward, re-
lax on the sofa, spin the chair); see Supplementary Material
for details. We ensure the data diversity with 46 participants
and 81 objects. Only high-level instructions were provided
to the participants to ensure natural performances.

Object Gallery CHAIRS features object collections
with rich appearances and kinematic structures. The objects
were selected and purchased online by maximizing the style
variance; 28 of them have at least one articulated joint. We
scanned the 3D meshes of each object with the Scaniverse
app on an iPad Pro (11-inch, 2nd generation) and manually
refined the geometries to remove artifacts. We define eight
object functional parts and use the annotation tool [35] to
segment the 3D meshes accordingly. When interacting with
an object, participants were only provided with instructions
compatible with the given object.

Camera and Hardware Setup As shown in Fig. 3,
all the sequences were captured exclusively in a con-
trolled laboratory setup, with a designated area of Smx4m
where all actions were fully visible to the cameras. Four
multi-view front-facing Kinect Azure DK cameras were
set up towards performed interactions. The cameras were
well-calibrated and synchronized. To ensure high-quality
ground-truth poses for both humans and objects, we adopted
a commercial inertial-optical hybrid MoCap system in ad-
dition to the Kinect setup; see details in the next section.

(a) camera setup

(b) mocap
on objects

(c) mocap on
participants
Figure 3. The camera and hardware setup of data collection
for the CHAIRS dataset. We (a) set up 4 front-facing RGB-D
cameras along with a set of motion capture cameras around the
capturing site, (b) attach hybrid trackers to movable object parts,
and (c) place 5 hybrid trackers and 17 IMUs on participants.

3.2. Motion Capture (MoCap) System

Hybrid MoCap Our MoCap system contains a Mo-
Cap suit with 5 hybrid trackers and 17 wearable Inertial
Measurement Units (IMUs), a pair of gloves with 12 IMUs

each, an additional set of hybrid trackers, and a set of 8
high-speed cameras. A hybrid tracker is a rigid assembly
of 4 optical markers and an IMU that can measure accurate
6D poses of itself under severe occlusion. We illustrate our
data collection setup in Fig. 3. When capturing the pose of a
human or object part, we can either use an IMU to record its
global orientation or a hybrid tracker to record its 6D pose.
Articulated Object Capture Collecting the articu-
lated pose of an object during interactions involves three
steps. First, we arrange the object to its canonical pose and
attach a hybrid tracker to each of its movable parts. Next,
we compute the relative transformation between the track-
ers and the object part. During recording, we calculate the
ground-truth 6D pose of each object part in real time based
on the trackers’ pose. Finally, we fit the rigid parts to the
object’s kinematic structure for high-quality object poses.
Human Body Capture We adopt the SMPL-X [38]
representation for human poses and shapes. Participants
were asked to wear a MoCap suit with 17 IMUs, a pair
of MoCap gloves, and 5 hybrid trackers mounted on their
heads, hands, and feet. Of note, the hybrid trackers cap-
ture 6D poses, whereas IMUs only measure global orien-
tations. We optimize the human model’s shape parameters
such that the reconstructed SMPL-X mesh aligns with the
hybrid tracker positions. The MoCap system produces real-
time estimated human poses and shapes during recording.

3.3. Post-processing

Data Alignment Kinect cameras and the MoCap
system have separate 3D coordinates and clocks. We
align the 3D coordinates of Kinect sequences with Mo-
Cap reconstructions based on plane-to-plane correspon-
dences [45], which alleviate the sensitivity to outliers, dis-
turbances, and partial overlaps. We align the temporal se-
quences from Kinect and MoCap using time-lagged cross-
correlation [46], a typical approach to synchronize two se-
quences that shift relatively in time.

Penetration Removal Due to the limited number of
sensors and discrepancies in limb lengths, implausible con-
tacts and penetrations still exist in captured 3D interac-
tions. To address this issue, we fix the physical glitches

(a) before removal (b) original skeleton  (c) optimized skeleton

(d) after removal

Figure 4. Illustration of the penetration removal process. (a)(d)
Small purple points denote human vertices without penetration,
whereas large colored points are those with penetration. Red points
denote the most significant penetration, and blue barely in contact.
(b)(c) Yellow lines denote the original skeleton, red markers the
target joints to be optimized, and red lines the optimized skeleton.
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Figure 5. The overall architecture of our model. The reconstruction model uses the predicted voxelized human to guide the pose estima-
tion of the interacting object. We further regress the root 6D pose of the object using the image feature and the SMPL-X parameters. We
utilize both predictions and an interaction prior to optimize the final estimated pose.

with a carefully designed optimization algorithm as shown
in Fig. 4. Given a parameterized human body and an artic-
ulated object point cloud, we first compute the penetration
depths between the human and the object point cloud. Next,
we use the transpose of the linear-blend-skinning weights of
SMPL-X to aggregate the maximum penetration depth and
direction to the human skeleton joints; this information is
used to calculate a target skeleton that offsets the penetra-
tion. Finally, we run gradient-based optimization to fit the
human model to the new skeleton while keeping the human
pose parameter close to the MoCap reconstruction.
Privacy Protection We blur the faces [34] of all par-
ticipants to hide identities and informed all participants that
they can remove themselves from CHAIRS at any time.

4. Articulated Object Pose Estimation

CHAIRS can support a wide range of AHOI tasks, in-
cluding detection, motion generation, physics-based analy-
sis, or even language-guided motion generation with addi-
tional annotations. We showcase the value of CHAIRS on
articulated object pose estimation. Despite recent progress
in articulated object pose estimation [11, 14, 58] and HOI
reconstruction [5, 47,55, 67], articulated object pose esti-
mation remains unaddressed in the challenging setting of
f-AHOI. Specifically, our setting requires the model to ac-
curately estimate the pose of the articulated objects in the
context of heavy occlusion and dense contact.

4.1. Task Definition

Given an observed image I, the parameterized human
model H = (8,6y,0n, Ry, Tp), and the meshes X =
{X;,i = 1,--- N} of the interacting object that has
N parts, the task is to estimate the object pose O =
{(R;,T;),i=0,---,N}, where B € R 6, € R?1%6 ¢, ¢
R30%6 and R, € R® and T}, € R? are the shape and pose pa-
rameters of the SMPL-X [38] model. (Rg € R%, T, € R?) is
the object root pose, and {(R; € R®, T; € R3)} denotes the
global rotation and translation for each part X;. We use the
orthogonal 6D representation [68] for the rotations in both
human and object poses.

4.2. Model Architecture

We propose an interaction-aware object pose estimation
model that leverages fine-grained geometric relationships in
HOIs and the interaction priors. Our method contains two
stages: given an image and estimated SMPL-X [38] param-
eters, we first estimate the object occupancy grids and root
pose with a reconstruction model. Then, we optimize the
reconstructed human-object pair with a learned interaction
prior. Fig. 5 illustrates the overall framework of our model,
and Fig. 6 shows the interaction prior model.

% . Latent Distribution . %

concatenate x 4
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n multi-scale voxelize x 4 )

Figure 6. An illustration of the interaction prior model. It is a
cVAE that generates object voxels conditioned on human voxels.
We minimize the norm of the latent code during optimization.

4.3. Object Reconstruction and Pose Initialization

Given an observation I, we estimate the human pose and
shape using an off-the-shelf estimator and voxelize the esti-
mated human shapes H' using Kaolin [22] to four different
resolutions. To better utilize the geometric relationship be-
tween the human-object pair, we estimate the object shape
and pose with the guidance of the human pose. Specifically,
we first extract the ResNet-101 [ 18] features from the image
and estimate the object voxel from the image features with
a 3D decoder, which is composed of three 3DConvT lay-
ers and upsampling layers at different resolutions, and two
1x1 3DConv layers. Next, we concatenate the convolutional
feature grids with the human voxels at each resolution to en-
hance the human pose guidance. The last 3DConv layer pro-
duces the estimated object occupancy grid V/O. We finally
concatenate the image features extracted from ResNet-101
and the SMPL-X parameters, and use an additional MLP to



regress the root pose ( Ry, T}) of the object. We also use this
root pose as the initialization for the optimization.

To train the reconstruction model, we first initialize the
human shape estimator with the pre-trained weights from
the PARE model [38] and fine-tune it on CHAIRS. Next,
we freeze the weights of the PARE model and train the re-
construction model with the object pose estimation loss £,
which is the L1 loss on object voxels.

4.4. Interaction Prior

To capture the fine-grained relationship between humans
and interacting objects, we propose a cVAE-based interac-
tion prior model, which learns the conditional distribution
of object occupancy given the human shape.

Specifically, the condition to the prior cVAE is a multi-
resolution voxelized human, and the goal is to reconstruct
the voxelized object. We use 3DConvNets as the encoder
and decoder. During training, we feed the voxelized object
through the encoder to get the object features at different
scales. The object features are concatenated with the multi-
resolution human voxels in each corresponding layer, and
an MLP is utilized to estimate the latent Gaussian distribu-
tion NV (u, o). Next, we sample the latent code z ~ N (1, o)
by re-parameterization and decode it with the decoder. Fi-
nally, we concatenate the feature grids at each layer in the
decoder with the corresponding human voxel condition.

We train the prior model on CHAIRS with four losses:

['P = Erecon + CKL + £pene + ‘Ccontray (l)

where L ccon and Lii, are the standard reconstruction and
KL divergence loss, respectively. Lyene is the penetration
loss that penalizes voxel grids occupied by both humans and
objects. Lcontra maximizes the distance of latent variables
between the original data and augmented noisy data. We
augment part of the training data with random noises.

4.5. Pose Optimization with Interaction Prior

To reconstruct the fine-grained human-object relation
and recover the final object poses, we utilize an additional
optimization stage based on the initialized poses using the
kinematic information and the interaction prior. Specifi-
cally, given the object’s CAD model and URDEF, the esti-
mated SMPL-X parameters H’, and object voxels V, esti-
mated from the reconstruction model, we initialize the ob-
ject model O with the estimated root transformations and
random part states, and iteratively update the object model
O’s parameters by minimizing the objective Jrecon + Jz:

Frecon = |V(O) =V l2s T = |[Enc(H',0)], ()

where V (+) is the voxelization function, Jyecon term penal-
izes the distance between the voxelized object model and
the estimated object voxels, and 7, constrains the norm of

the latent predicted by the cVAE encoder to be small, which
regularizes the estimated interaction to be close to the prior.
The overall process of pose optimization with interaction
prior is illustrated in Fig. 7.
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Figure 7. An illustration of pose estimation with interaction

prior. Starting with the reconstruction output, we optimize the ob-

ject according to the and interaction prior.

5. Experiments

Experimental Settings We split CHAIRS into train-
ing, testing, and evaluation sets; 70% of objects are used
for training, 20% for testing, and the rest for evaluation. We
evaluate the performance of our model under two different
settings: with (w/ opt) and without optimization (w/o opt).
In the w/ opt. setting, we report the chamfer distance be-
tween the objects posed with ground truth and estimated
transformation parameters. In the w/o opt. setting, however,
we do not have the estimated transformation parameters. We
therefore report the chamfer distance between the ground-
truth object mesh and the mesh obtained by running the
marching cube algorithm on the reconstructed voxels.

Evaluation Metrics We evaluate object pose estima-
tion with the mean rotation and translation errors of each
object part, and evaluate the object shape reconstruction
with the chamfer distance and intersection over union (IoU).
We finally evaluate the reconstructed f~AHOI with the pen-
etration depth and contact scores between the human and
the object. We compute the penetration depth for a human-
object pair as the maximum depth of the object’s surface
inside the human’s body. This metric is zero if there is no
penetration. The contact value is the shortest distance be-
tween the human and the object. We clip the contact value
to [0,20cm] for human-object pairs that are far away.

Baseline Methods We compare the performance of ar-
ticulated object pose estimation with two object reconstruc-
tion methods LASR [59] and ANCSH [27] as baselines; we
use the depth map as the input to ANCSH. Both methods
are fine-tuned on CHAIRS. We further compare our model
with D3D-HOI [58] that jointly estimates the human and
object poses. We modified the optimization objectives of
D3D-HOI to better fit the data distribution of CHAIRS.

5.1. Results and Analyses

Tab. 2 shows the quantitative results. Incorporating the
geometrical relationships, our model significantly improves
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Figure 8. Qualitative results of our model. (a)-(e) Results on CHAIRS test set. (f)-(g) Results on images taken in the wild. Baseline results

are obtained from D3D-HOI [58]. We show optimized human and object poses in the third and fourth row, and visualize the mesh obtained
by running marching cube on the reconstructed voxels in the last row.

the performance of pose estimation and shape reconstruc-
tion compared with existing methods. More specifically, in
the w/o opt. setting where the object is unknown, our model
outperforms the SOTA method LASR, by a wide margin.
Although our model is surpassed by D3D-HOI and AN-
CSH, they both assume known object structures. Our model
notably outperforms all existing baselines when we provide
the object structure to our model in the w/ opt. setting.

We show qualitative results in Fig. 8. Columns (a)-(e)
show reconstruction results on the test set. We visualize the

Table 2. Comparisons against existing methods. %: method re-
quires knowledge of object structure and/or geometry; : method
does not require object-related knowledge.

Object HOI

Method Rot.| Transl.] CD| IoU? | Pene.] Cont.|

) (mm) (mm) (%) | (mm) (mm)
LASRT [59] / / 205.2 / / /
ANCSH* [27] / / 90.36 / / /
D3D-HOI* [58] | 27.31 1192 1269 16.60 | 7.472  1.163
Ours (w/o opt.) / / 160.2 11.03 | 4.530  2.720
Ours (w/ opt.)* 19.35 66.23 72.30 21.57 | 1.143 1.562

(d) (e) ® (2

reconstructed mesh before optimization with the marching
cube. We observe that our model can reconstruct plausible
and accurate interactions before optimization, and the opti-
mization step further improves interaction details.

5.2. Ablations

We verify the design of our model with three ablation
studies and report the quantitative results in Tab. 3.

Prior We remove the interaction prior model and opti-
mize object poses by minimizing only L,eccon. We observe a
large drop in performance in both * and { settings and con-

Table 3. Ablation of interaction, prior, and contrastive loss.

Object HOI
Method Rot.| Transl.] CD| IoU? | Pene.| Cont.]

) (mm)  (mm) (%) | (mm) (mm)
Fullt / / 160.2 11.03 | 4.530  2.720
— prior! / / 1653 1052 | 4377  3.295
Full* 1935  66.23 7230 21.57 | 1.143  1.562
—prior* | 19.97 8339 8790 18.81 | 1.749  2.081
—contr* | 21,52  81.90 87.28 1893 | 1.265 2393
—inter* | 17.88  69.53  78.12 19.50 | 1.022  2.320




firm that the interaction prior plays a vital role in estimating
the object pose accurately. Note that both settings have an
optimization step, and the only difference is that the * model
has access to the object geometry and structure during opti-
mization. We observe a drop in penetration when the prior
model is removed in the { setting, while the contact value
increases by a much larger margin. This indicates our inter-
action prior model pulls the object toward the human when
they are not in contact.

Contrast We remove the contrastive 10ss L.ontra When
training the prior model. We observe similar results as in the
—prior experiment. This result shows that contrastive loss is
crucial to learning a robust interaction prior.

Interaction We remove the concatenated human voxel
in 3DConv layers in both the reconstruction model and
the interaction prior model. This eliminates the interac-
tion awareness of our model. We observe slight degrada-
tion across all object reconstruction metrics, showing the
significance of interaction awareness in our model. We also
observe that the contact value increases while penetration
drops. This is similar to the —prior ablation in w/o opt.
setting, which shows that the interaction awareness is also
pulling the human and object towards each other. Finally,
we observe an unexpected low rotation error, which we at-
tribute to the rotation symmetries in the dataset.

In summary, we conclude that all three components con-
tribute significantly to object pose and shape reconstruction.

Failure Cases Our model fails to estimate the correct
orientation of object parts in two typical scenarios. The
most common scenario is rotation symmetry, wherein the
object is geometrically similar under certain rotations. Ro-
tation symmetry is common in spherical and cylindrical
object parts, such as the base of a stool or a round seat.
Fig. 9a shows an example of rotation symmetry. Existing
methods [10,50] bypass this issue with (i) multiple equally-
correct ground truths and (ii) a min-of-N loss that calculates
the smallest distance to any of the ground truths. However,
this method requires a carefully designed classification of
the symmetry type for each object.

We attribute another common failure to interaction sym-
metry; the way a person interacts with an object is identical
when the object is in different poses. Interaction symmetry
confuses our model when the visual module fails to differ-
entiate poses. We show in Fig. 9b that our model leverages
fine geometrical relations to reconstruct natural interactions
despite the false prediction of the object pose.

In-the-wild Generalization We curate a small set of
images captured in our daily scenes to test the model’s gen-
eralizability. Fig. 8(f-g) shows two qualitative results in an
office and demonstrates that the proposed model generalizes
to images taken outside laboratory settings. The model fails
to predict an accurate object pose in the last column when
the person is not interacting with the object. Please see ad-

(b) an example of interaction symmetry

Figure 9. Common failure cases caused by symmetry. The left
meshes are ground truths, whereas the right are the model predic-
tions. (a) Rotation-symmetrical object yields a large rotation error
but a small visual error. (b) Interaction symmetry occurs when both
the body and legs of the puppy stool are flipped, yet the predicted
interactions and structure look reasonable.

ditional results and analyses in the Supplementary Material.

6. Conclusion

We promote HOI towards articulated, fine-grained, and
part-level direction with (i) a novel dataset, CHAIRS,
(i1) a challenging problem of object reconstruction under
f-AHOI, and (iii) a strong baseline. The CHAIRS dataset
captures a large-scale collection of whole-body AHOIs with
diverse and natural interactions and wildly different sittable
objects. The object reconstruction problem removes the
oversimplified assumption of kinematic consistency, and
our model leverages fine-grained interaction relationships
to rule out ambiguities.

Limitations While our model can accurately recon-
struct articulated objects under heavy occlusions from
f-AHOL, its performance depends heavily on the interaction
that created such ambiguity. The performance of our model
drops significantly when there is no f~AHOI. In addition,
Our model does not leverage the interaction prior to im-
prove human pose estimation. Similar to our approach, the
same interaction prior will likely improve human pose esti-
mation in hard cases when the human is heavily occluded.

Societal Impacts CHAIRS and f-AHOI bring in new
opportunities to understand how humans interact with the
environment. We firmly believe that a solid understand-
ing of f~-AHOIs in the future would empower intelligent
agents in real-life applications, such as assistive robots in
healthcare and elderly care services, as well as indoor ser-
vice robots that clean and arrange furniture. Meanwhile, we
are aware of the insecure use of f-AHOIs understanding in



surveillance technology that could lead to the invasion of
privacy; we blur all faces to remove personally identifiable
information in our dataset.
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A. Model

Why Articulated Object Pose Estimation? Existing
studies of HOI usually estimate the pose of human and ob-
ject jointly, hoping the two estimations to improve each
other. However, due to the imbalanced attention received
by the human and articulated object pose estimation, we
empirically observe that the object pose estimation is far
from well-solved compared with human pose estimation,
especially in scenarios where dense interactions and occlu-
sions appear. Therefore, we mainly focus on improving the
untouched articulated object pose estimation under human
pose guidance in this paper, leveraging the mature and sta-
ble techniques of human pose estimation. Such motivation
is similar to [61], which focuses on improving the recon-
struction of interacting objects rather than the hand. Of note,
our dataset still supports human pose estimation and en-
courages efforts that potentially improve it. Tab. Al shows
that incorporating the human pose information can signif-
icantly improve the object pose estimation performance,
which verifies our assumption. The ground-truth human
pose can further improve the object pose estimation by a
large margin, demonstrating that further optimization of hu-
man poses is promising. It is regarded as one important step

in our future work.
Table Al. Comparisons against optimizing the articulated ob-

ject poses with different human pose priors. GT denotes using
ground truth human poses to optimize the object poses, No inter.
denotes not considering human-object interaction prior.

Method Human ‘ Object
MPJPE| PA-MPIPE| | CD.| 1I0OU.1
(mm) (mm) (mm) (%)
No inter. / / 87.90 18.81
PARE [26] 81.09 47.19 73.79  21.66
PARE(finetune) 74.50 43.99 7230  21.57
GT 0 0 65.50 23.16

Contrastive Loss We expect our interaction prior to
capturing a more general human-object interaction relation-
ship by a conditional Gaussian distribution, where the latent
codes of reasonable and common human-object spatial rela-
tionships should locate closer to the mean of the computed
Gaussian than those of the unreasonable ones. To encour-
age this desired behavior, we devise a contrastive loss to
train the interaction prior model alongside the usual pene-
tration, reconstruction, and KL-divergence losses. Given an
observed human H and voxel Vo of the object O from the
training data as a positive example (H, Vo), we first gener-
ate the corresponding negative example (H, V) by random
perturbation to the object.

More specifically, we add random noise to the root
and articulated poses of O and obtain VY, by voxeliza-
tion. We then define the contrastive loss as Lcontra

maz(0, ||[Enc(Vo, H)|| — ||[Enc(V), H)||), where Enc
represents the conditional encoder o?our proposed cVAE-

based prior model. L ontra pushes the latent codes of per-
turbed human-object pairs away from the distribution cen-
troid.

Coordinates for Reconstruction and Optimization
Both object reconstruction and optimization are conducted
in the human local coordinate centered at the pelvis bone
of the SMPL model with the same orientation as the human
root. We set a 2m x 2m x 2m cubic as the boundary for
voxelization and interaction prior.

Optimization Details Fig. Al illustrates the object
pose optimization process. Given the estimated object
voxel, the estimated human, the object shape, and the kine-
matic structure of the object, the goal of the optimization
is to fit the object to the human body under the following
conditions:

(1) The optimized object should match the object voxel
estimated from the monocular image.

(2) The spatial relationship between the object and the
human agrees to the interaction prior.

The parameters to be optimized are the root 6D pose of
the object, denoted as R, T', and its joint parameters (if any),
denoted as @, that control the rotation and shift of the parts
under kinematic constraints. In this work, we assume that
a joint (except the root) can be revolute (rotate along one
axis), prismatic (shift along one axis), or both. The revolute-
prismatic joint (such as the joint that links the base and seat
of an office chair) is constrained to rotate and shift along the
same axis.

For the optimization, we first initialize the root pose R, T’
using the estimated root 6D pose from the object pose esti-
mation model and all the joint parameters ¢ to zero. Then
the parameters R,7T" and ® are optimized by minimizing
the reconstruction 1oss Jecon and interaction prior loss 7,
through gradient descent.

Note that the discrete (0, 1) voxel occupancy is not dif-
ferentiable w.r.t. the object parameters R, T, and ® through
deformations or transformations. Thus, we resample the
voxel occupancy using trilinear interpolation given the
affined (0, 1) voxel grid, allowing the gradients to flow and
update the root and joint parameters. After optimization, the
parameters can be directly applied to get an updated 3D ob-
ject model and further a finer object representation (e.g.,
mesh) with less geometric error.

Model Details Please check the code in [https:
/ /github . com/ jnnan/chairs/blob /main/
optimize_cvae_part.pyl.

Adapting D3D-HOI as Baseline The D3D-HOI
method [58] is originally designed for hand-centric inter-
actions, such as opening and closing a microwave, and
contains manually defined optimization objectives, such as
distance between hand and object. We make the follow-
ing modifications to D3D-HOI to better fit the context of
CHAIRS:
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Figure A1l. Detailed diagram of the optimization process.

Table A2. Object reconstruction errors on BEHAVE dataset,
with object kinematic structure and optimization.

Chair Table Yogaball Suitcase
Cb| 1Iout | CD.| IOU.7 | CD| IOUt | CD.l IOU.1
(mm) (%) | (mm) (%) (mm) (%) | (mm) (%)

1345 1135 | 161.6  10.53 | 106.37 30.53 | 161.0 29.80
127.3  14.22 | 152.2  12.86 | 98.79 33.75 | 1584 29.62

w/o HOI prior
w/ HOI prior

1. We replace the differentiable articulated object
model in D3D-HOI by the pytorch_kinematics pack-
age (https://github.com/UM-ARM-Lab/
pytorch__kinematics), which supports articu-
lated objects with multiple links and joints.

2. We changed the contact error in D3D-HOI to the dis-
tance between the hip joint and the center of the chair
seat. Since the hip joint is usually higher than its
nearby skin, we add a 20cm offset along the negative
Y direction when computing this error.

3. The orientation term in D3D-HOI encourages the hu-
man and the object to have opposite directions in
“opening” and “closing” actions. We change this term
to encourage the human to have the same orientation
as the chair in the “sitting” case.

B. Additional Results

Qualitative Results In Fig. A2, we qualitatively show
more randomly selected results on the test set of CHAIRS.
In general, our model predicts accurate object poses and
shapes.

In the Wild In Fig. A3, we qualitatively evaluate the
generalization power of our model with three videos cap-
tured in the wild. We show four frames from each video.
Our model generalizes well in the first row when the back-
ground is relatively clean. Our model fails to predict accu-
rate object poses in some samples in the second and third
rows. We hypothesize these are caused by the noisy back-
grounds or the camera views that are out of the training data
distribution.

Experimental Results on BEHAVE Dataset We ap-
ply our method to the BEHAVE dataset [2] to evaluate the
generalizability of the reconstruction and HOI prior model.
We select four objects from the object list with rich full-
body HOI, namely a chair, a square table, a yogaball, and a
suitcase. Our method is tested under the full object knowl-
edge setting. We separately train object reconstruction and
HOI prior models for each object. Different kinds of inter-
action (e.g., move and sit for the square table) are mixed up
in one model. We show quantitative results in Tab. A2 and
qualitative results in Fig. A4. We observe that although the
metrics drop numerically, our model is still able to recon-
struct the poses of the interacting objects.
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Figure A3. Qualitative results of running our model on images captured in the wild.
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Figure A4. Qualitative results of running our model on images from the BEHAVE [2] dataset.

C. Dataset
C.1. Data Collection

Object Gallery We render all objects in CHAIRS in

Fig. AS. Parts are colored according to category.

Instructions Each participant was instructed to sit

down before and after each instruction for synchronization.
Participants can stand up and walk around while perform-
ing an instruction. All physical interactions were performed
with the sittable objects. All other objects that appeared in
the instructions (table, person, phone, efc.) required partici-
pants to interact by imaging their presence.

1.

2.
3.
4,

Pick up an object from the ground.
Talk to someone next to you.
Relax alone at home.

Listen to your friend talk while propping your head with
your hand.

. Sit and play with your phone.
. Sit with your hands on the seat.

Think with your head lowered.

. Your neck feels uncomfortable.

Grab a thing from the desk behind you.

. Move the chair forward.

. Lean on the back. Adjust or rock it if you can.
. Move the chair.

. Adjust the chair.

. Sit with a twisted posture.

. Sit with your feet on the footstep or the footrest.
. Change the pose of your legs.

. Stretch a little in the chair.

. Change to another pose of sitting.

. Adjust the height of the seat.

. Walk around the chair and sit down.



Figure AS. Sittable objects in CHAIRS. The first six rows are the objects in the training set, whereas the last row shows the ones in the
test set.

21.
22.
23.
24,
25.
26.
217.
28.
29.
30.
31.
32.

Move, rock, or rotate the chair.

Your back feels uncomfortable.

Lean your head on the headrest. Adjust it if possible.
Stretch your back in the chair.

Talk to the person behind you.

Move the chair backward.

Lay in the chair.

Put your arms on the armrests. Adjust them if you can.

Move the chair to your left.

Move the chair to your right.

Adjust the seat.

Pick up a heavy object from the ground.

We only sample instructions that are compatible given
an object. For example, “Lean on the back” is not compati-
ble for all stools. Figure A6 shows diverse performances in
CHAIRS.

Recruitment Due to the complex nature of data col-
lection that requires physical presence at the scene while
wearing MoCap suits, all participants were voluntary col-
leagues. Participants were compensated with a gift with a
value of $4 USD for every 18 sequences recorded.

Body and Hand Shape We use optical trackers to
record the positions of the head, two hands, and two feet
of each participant. We then optimize the body shape pa-
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Figure A6. Performances of different participants on different objects with the same instruction. The first four rows show four performances
of the instruction “Move the chair”. The second participant rotated the chair with a small angle. The last four rows show four performances
of the instruction “Stretch a little in the chair.”

rameter 3 of the SMPLX model to fit the tracker positions. Motion Capture System We used a Noitom Virtual
We rely on SMPLX’s default hand shape parameter since Production Solution (VPS) camera system and a Noitom
it is not our primary focus to model dexterous hand-object Perception Neuron Studio IMU system. The cameras each
interactions. have 1280x1024 resolution, 210 fps, <5ms latency, 3.6mm

F#2.4 lens, 81 deg horizontal fov, and 67 deg vertical fov.



C.2. Post Processing

Spatial Alignment Our data collection system con-
sists of multiple pieces of hardware, including 4 Azure
Kinect DK cameras and a hybrid MoCap system. Each cam-
era and the MoCap system have their own coordinate sys-
tems. We use OpenCV and an Aruco checkerboard to reg-
ister all cameras to the camera space of the left-most cam-
era and align it with the MoCap’s coordinate frame with an
Iterative Closest Points (ICP) algorithm.

Given the transformation matrices of the Kinect cam-
eras, we apply a custom ICP algorithm to refine both the
multi-viewpoint clouds and the registration of Kinect and
Mocap. We base our method on plane-to-plane correspon-
dences [45] to alleviate the sensitivity to outliers, distur-
bances, and partial overlaps. Given the source point set
P = {p;,i = 1,..., N} captured by the Kinect depth cam-
eras and the target set Q = {¢;,i = 1, ..., M} reconstructed
from the MoCap system, the goal is to calculate the op-
timum transformation matrix 7', such that TPT = Q7.
Following point-to-point ICP [6], we first find the nearest
points @; in @ to each p; in P. Next, we iteratively update
T to minimize the Mahalanobis distance between P and Q:

M
T = argmin 2 dlCe v 1O T My, (Al

i=1
where d; is the corresponding Euclidean distance between
p; and q;, Cfi and Cf; , the covariance matrix calculate by
the n nearest i)oints around ¢; in @ and p; in P. Finally, we
use Anderson Acceleration [12] for a faster convergence to

a fixed point.

Temporal Alignment Observed images and poses in
CHAIRS come from two independent systems (i.e., MoCap
and Kinect) without clock synchronization. Since both sys-

tems run steadily at 30 Hz, the two recorded data streams
have a constant difference in time. We use a time-lagged
cross-correlation (TLCC) [46] algorithm to align the two
systems temporally.

Specifically, we first extract the heights of the subject’s
head and two hands from both systems. For our MoCap sys-
tem, we can directly read the joint positions with forward
kinematics. We obtain the human joint positions with the
Kinect Body Tracker SDK for the Kinect cameras. Next,
we compute the first-order differential on each sequence
and compute the time offset between the differentials of
each joint using TLCC. Finally, by measuring the peak of
the TLCC correlation, we obtain three offsets (one for each
joint); we use the median of the three offsets as our final
temporal offset.

D. Compliance

List of code, data, models used, and their licenses

We used the following assets. Please find the licenses of
corresponding assets in the GitHub directories inside square

brackets.

* SMPL-X [38] model and body
model,license/smplx-body.txt]

* ExPose [7] model and code [license/expose.txt]

* FrankMocap [42] model and code [Li-
cense/frankmocap.txt]

* PARE [26] model and code [license/pare.txt]

» Category-Level Articulated Object Pose Estimation [27]
model and code [No license information found.)

* Metropoly rigged 3D people (used in main paper Fig.3
and supplementary video) [license/animation-model.txt]

* D3D-HOI [58] code [No license information found.]

* iStock [https://www.istockphoto.com] images
used for in-the-wild evaluations. [license/istock.txt]

[license/smplx-


https://www.istockphoto.com
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